1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
// Smoldot
// Copyright (C) 2019-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#![cfg(feature = "std")]
#![cfg_attr(docsrs, doc(cfg(feature = "std")))]
//! Augments an implementation of `AsyncRead` and `AsyncWrite` with a read buffer and a write
//! buffer.
//!
//! While this module is generic, the targeted use-case is TCP connections.
// TODO: usage and example
use crate::libp2p::read_write;
use core::{
fmt, future, mem, ops,
pin::{self, Pin},
task::Poll,
};
use futures_util::{AsyncRead, AsyncWrite};
use std::io;
/// Holds an implementation of `AsyncRead` and `AsyncWrite`, alongside with a read buffer and a
/// write buffer.
#[pin_project::pin_project]
pub struct WithBuffers<TSocketFut, TSocket, TNow> {
/// Actual socket to read from/write to.
#[pin]
socket: Socket<TSocketFut, TSocket>,
/// Error that has happened on the socket, if any.
error: Option<io::Error>,
/// Storage for data read from the socket. The first [`WithBuffers::read_buffer_valid`] bytes
/// contain actual socket data, while the rest contains garbage data.
/// The capacity of this buffer is at least equal to the amount of bytes requested by the
/// inner data consumer.
read_buffer: Vec<u8>,
/// Number of bytes of data in [`WithBuffers::read_buffer`] that contain actual data.
read_buffer_valid: usize,
read_buffer_reasonable_capacity: usize,
/// True if reading from the socket has returned `Ok(0)` earlier, in other words "end of
/// file".
read_closed: bool,
/// Storage for data to write to the socket.
write_buffers: Vec<Vec<u8>>,
/// True if the consumer has closed the writing side earlier.
write_closed: bool,
/// True if the consumer has closed the writing side earlier, and the socket still has to
/// be closed.
close_pending: bool,
/// True if data has been written on the socket and the socket needs to be flushed.
flush_pending: bool,
/// Value of [`read_write::ReadWrite::now`] that was fed by the latest call to
/// [`WithBuffers::read_write_access`].
read_write_now: Option<TNow>,
/// Value of [`read_write::ReadWrite::wake_up_after`] produced by the latest call
/// to [`WithBuffers::read_write_access`].
read_write_wake_up_after: Option<TNow>,
}
#[pin_project::pin_project(project = SocketProj)]
enum Socket<TSocketFut, TSocket> {
Pending(#[pin] TSocketFut),
Resolved(#[pin] TSocket),
}
impl<TSocketFut, TSocket, TNow> WithBuffers<TSocketFut, TSocket, TNow>
where
TNow: Clone + Ord,
{
/// Initializes a new [`WithBuffers`] with the given socket-yielding future.
pub fn new(socket: TSocketFut) -> Self {
let read_buffer_reasonable_capacity = 65536; // TODO: make configurable?
WithBuffers {
socket: Socket::Pending(socket),
error: None,
read_buffer: Vec::with_capacity(read_buffer_reasonable_capacity),
read_buffer_valid: 0,
read_buffer_reasonable_capacity,
read_closed: false,
write_buffers: Vec::with_capacity(64),
write_closed: false,
close_pending: false,
flush_pending: false,
read_write_now: None,
read_write_wake_up_after: None,
}
}
/// Returns an object that implements `Deref<Target = ReadWrite>`. This object can be used
/// to push or pull data to/from the socket.
///
/// > **Note**: The parameter requires `Self` to be pinned for consistency with
/// > [`WithBuffers::wait_read_write_again`].
pub fn read_write_access(
self: Pin<&mut Self>,
now: TNow,
) -> Result<ReadWriteAccess<TNow>, &io::Error> {
let this = self.project();
debug_assert!(this
.read_write_now
.as_ref()
.map_or(true, |old_now| *old_now <= now));
*this.read_write_wake_up_after = None;
*this.read_write_now = Some(now.clone());
if let Some(error) = this.error.as_ref() {
return Err(error);
}
this.read_buffer.truncate(*this.read_buffer_valid);
let is_resolved = matches!(*this.socket, Socket::Resolved(_));
let write_bytes_queued = this.write_buffers.iter().map(Vec::len).sum();
Ok(ReadWriteAccess {
read_buffer_len_before: this.read_buffer.len(),
write_buffers_len_before: this.write_buffers.len(),
read_write: read_write::ReadWrite {
now,
incoming_buffer: mem::take(this.read_buffer),
expected_incoming_bytes: if !*this.read_closed { Some(0) } else { None },
read_bytes: 0,
write_bytes_queued,
write_buffers: mem::take(this.write_buffers),
write_bytes_queueable: if !is_resolved {
Some(0)
} else if !*this.write_closed {
// Limit outgoing buffer size to 128kiB.
// TODO: make configurable?
Some((128 * 1024usize).saturating_sub(write_bytes_queued))
} else {
None
},
wake_up_after: this.read_write_wake_up_after.take(),
},
read_buffer: this.read_buffer,
read_buffer_valid: this.read_buffer_valid,
read_buffer_reasonable_capacity: *this.read_buffer_reasonable_capacity,
write_buffers: this.write_buffers,
write_closed: this.write_closed,
close_pending: this.close_pending,
read_write_wake_up_after: this.read_write_wake_up_after,
})
}
}
impl<TSocketFut, TSocket, TNow> WithBuffers<TSocketFut, TSocket, TNow>
where
TSocket: AsyncRead + AsyncWrite,
TSocketFut: future::Future<Output = Result<TSocket, io::Error>>,
TNow: Clone + Ord,
{
/// Waits until [`WithBuffers::read_write_access`] should be called again.
///
/// Returns immediately if [`WithBuffers::read_write_access`] has never been called.
///
/// Returns if an error happens on the socket. If an error happened in the past on the socket,
/// the future never yields.
pub async fn wait_read_write_again<F>(
self: Pin<&mut Self>,
timer_builder: impl FnOnce(TNow) -> F,
) where
F: future::Future<Output = ()>,
{
let mut this = self.project();
// Return immediately if `read_write_access` was never called or if `wake_up_after <= now`.
match (&*this.read_write_wake_up_after, &*this.read_write_now) {
(_, None) => return,
(Some(when_wake_up), Some(now)) if *when_wake_up <= *now => {
return;
}
_ => {}
}
let mut timer = pin::pin!({
let fut = this
.read_write_wake_up_after
.as_ref()
.map(|when| timer_builder(when.clone()));
async {
if let Some(fut) = fut {
fut.await;
} else {
future::pending::<()>().await;
}
}
});
// Grow the read buffer in order to make space for potentially more data.
this.read_buffer.resize(this.read_buffer.capacity(), 0);
future::poll_fn(move |cx| {
if this.error.is_some() {
// Never return.
return Poll::Pending;
}
// If still `true` at the end of the function, `Poll::Pending` is returned.
let mut pending = true;
match future::Future::poll(Pin::new(&mut timer), cx) {
Poll::Pending => {}
Poll::Ready(()) => {
pending = false;
}
}
match this.socket.as_mut().project() {
SocketProj::Pending(future) => match future::Future::poll(future, cx) {
Poll::Pending => {}
Poll::Ready(Ok(socket)) => {
this.socket.set(Socket::Resolved(socket));
pending = false;
}
Poll::Ready(Err(err)) => {
*this.error = Some(err);
return Poll::Ready(());
}
},
SocketProj::Resolved(mut socket) => {
if !*this.read_closed && *this.read_buffer_valid < this.read_buffer.len() {
let read_result = AsyncRead::poll_read(
socket.as_mut(),
cx,
&mut this.read_buffer[*this.read_buffer_valid..],
);
match read_result {
Poll::Pending => {}
Poll::Ready(Ok(0)) => {
*this.read_closed = true;
pending = false;
}
Poll::Ready(Ok(n)) => {
*this.read_buffer_valid += n;
// TODO: consider waking up only if the expected bytes of the consumer are exceeded
pending = false;
}
Poll::Ready(Err(err)) => {
*this.error = Some(err);
return Poll::Ready(());
}
};
}
loop {
if this.write_buffers.iter().any(|b| !b.is_empty()) {
let write_result = {
let buffers = this
.write_buffers
.iter()
.map(|buf| io::IoSlice::new(buf))
.collect::<Vec<_>>();
AsyncWrite::poll_write_vectored(socket.as_mut(), cx, &buffers)
};
match write_result {
Poll::Ready(Ok(0)) => {
// It is not legal for `poll_write` to return 0 bytes written.
unreachable!();
}
Poll::Ready(Ok(mut n)) => {
*this.flush_pending = true;
while n > 0 {
let first_buf = this.write_buffers.first_mut().unwrap();
if first_buf.len() <= n {
n -= first_buf.len();
this.write_buffers.remove(0);
} else {
// TODO: consider keeping the buffer as is but starting the next write at a later offset
first_buf.copy_within(n.., 0);
first_buf.truncate(first_buf.len() - n);
break;
}
}
// Wake up if the write buffers switch from non-empty to empty.
if this.write_buffers.is_empty() {
pending = false;
}
}
Poll::Ready(Err(err)) => {
*this.error = Some(err);
return Poll::Ready(());
}
Poll::Pending => break,
};
} else if *this.flush_pending {
match AsyncWrite::poll_flush(socket.as_mut(), cx) {
Poll::Ready(Ok(())) => {
*this.flush_pending = false;
}
Poll::Ready(Err(err)) => {
*this.error = Some(err);
return Poll::Ready(());
}
Poll::Pending => break,
}
} else if *this.close_pending {
match AsyncWrite::poll_close(socket.as_mut(), cx) {
Poll::Ready(Ok(())) => {
*this.close_pending = false;
pending = false;
break;
}
Poll::Ready(Err(err)) => {
*this.error = Some(err);
return Poll::Ready(());
}
Poll::Pending => break,
}
} else {
break;
}
}
}
};
if !pending {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
}
}
impl<TSocketFut, TSocket: fmt::Debug, TNow> fmt::Debug for WithBuffers<TSocketFut, TSocket, TNow> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut t = f.debug_tuple("WithBuffers");
if let Socket::Resolved(socket) = &self.socket {
t.field(socket);
} else {
t.field(&"<pending>");
}
t.finish()
}
}
/// See [`WithBuffers::read_write_access`].
pub struct ReadWriteAccess<'a, TNow: Clone> {
read_write: read_write::ReadWrite<TNow>,
read_buffer_len_before: usize,
write_buffers_len_before: usize,
// Fields below as references from the content of the `WithBuffers`.
read_buffer: &'a mut Vec<u8>,
read_buffer_valid: &'a mut usize,
read_buffer_reasonable_capacity: usize,
write_buffers: &'a mut Vec<Vec<u8>>,
write_closed: &'a mut bool,
close_pending: &'a mut bool,
read_write_wake_up_after: &'a mut Option<TNow>,
}
impl<'a, TNow: Clone> ops::Deref for ReadWriteAccess<'a, TNow> {
type Target = read_write::ReadWrite<TNow>;
fn deref(&self) -> &Self::Target {
&self.read_write
}
}
impl<'a, TNow: Clone> ops::DerefMut for ReadWriteAccess<'a, TNow> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.read_write
}
}
impl<'a, TNow: Clone> Drop for ReadWriteAccess<'a, TNow> {
fn drop(&mut self) {
*self.read_buffer = mem::take(&mut self.read_write.incoming_buffer);
*self.read_buffer_valid = self.read_buffer.len();
// Adjust `read_buffer` to the number of bytes requested by the consumer.
if let Some(expected_incoming_bytes) = self.read_write.expected_incoming_bytes {
if expected_incoming_bytes < self.read_buffer_reasonable_capacity
&& self.read_buffer.is_empty()
{
// We use `shrink_to(0)` then `reserve(cap)` rather than just `shrink_to(cap)`
// so that the `Vec` doesn't try to preserve the data in the read buffer.
self.read_buffer.shrink_to(0);
self.read_buffer
.reserve(self.read_buffer_reasonable_capacity);
} else if expected_incoming_bytes > self.read_buffer.len() {
self.read_buffer
.reserve(expected_incoming_bytes - self.read_buffer.len());
}
debug_assert!(self.read_buffer.capacity() >= expected_incoming_bytes);
}
*self.write_buffers = mem::take(&mut self.read_write.write_buffers);
if self.read_write.write_bytes_queueable.is_none() && !*self.write_closed {
*self.write_closed = true;
*self.close_pending = true;
}
*self.read_write_wake_up_after = self.read_write.wake_up_after.take();
// If the consumer has advanced its reading or writing sides, we make the next call to
// `read_write_access` return immediately by setting `wake_up_after`.
if (self.read_buffer_len_before != self.read_buffer.len()
&& self
.read_write
.expected_incoming_bytes
.map_or(false, |b| b <= self.read_buffer.len()))
|| (self.write_buffers_len_before != self.write_buffers.len() && !*self.write_closed)
{
*self.read_write_wake_up_after = Some(self.read_write.now.clone());
}
}
}
// TODO: tests